不同坐标系下的算符
直角坐标
梯度: $\nabla f = \left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}\right)$
散度: $\nabla\cdot \mathbf{F} = \frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z}$
旋度: $\nabla \times \mathbf{F}=\left(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z},\;\frac{\partial F_x}{\partial z}-\frac{\partial F_z}{\partial x},\;\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y}\right)$
柱坐标
梯度: $\nabla f = \hat{\mathbf{e}}_r \frac{\partial f}{\partial r} + \hat{\mathbf{e}}_\theta \frac{1}{r}\frac{\partial f}{\partial \theta} + \hat{\mathbf{e}}_z \frac{\partial f}{\partial z}$
散度: $\nabla\cdot \mathbf{F} = \frac{1}{r}\frac{\partial}{\partial r}(r F_r) + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$
拉普拉斯(标量): $\nabla^2 f = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$
球坐标
梯度: $\nabla f = \hat{\mathbf{e}}_r \frac{\partial f}{\partial r} + \hat{\mathbf{e}}_\theta \frac{1}{r}\frac{\partial f}{\partial \theta} + \hat{\mathbf{e}}_\varphi \frac{1}{r\sin\theta}\frac{\partial f}{\partial \varphi}$
散度: $\nabla\cdot \mathbf{F} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2 F_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta F_\theta) + \frac{1}{r\sin\theta}\frac{\partial F_\varphi}{\partial \varphi}$
拉普拉斯(标量): $\nabla^2 f = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial f}{\partial \theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \varphi^2}$
常用矢量恒等式
$\nabla\times(\nabla f)=0$
$\nabla\cdot(\nabla\times \mathbf{F})=0$
$\nabla\times(\nabla\times \mathbf{F})=\nabla(\nabla\cdot \mathbf{F})-\nabla^2\mathbf{F}$