常用矢量恒等式
$\nabla\times(\nabla f)=0$
$\nabla\cdot(\nabla\times \mathbf{F})=0$
$\nabla\times(\nabla\times \mathbf{F})=\nabla(\nabla\cdot \mathbf{F})-\nabla^2\mathbf{F}$
$\nabla \cdot (\phi \mathbf{F}) = (\nabla \phi) \cdot \mathbf{F} + \phi (\nabla \cdot \mathbf{F})$
$\nabla \times (\mathbf{A}\times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$